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CHAPTER 1 INTRODUCTION

1.1 Motivation

While the standard model of particle physics has been greatly successful at explaining

observations made in particle physics experiments, there are indications that it is not com-

plete. Questions that the standard model leaves unanswered include why there are three

generations of particles, why the particles have the masses that they do, and how does grav-

ity fit into the picture. Observations that indicate that the standard model is incomplete

include the apparent existence of dark matter, the discovery of neutrino oscillations, and the

possible existence of sterile neutrinos [1].

Neutrino oscillations refer to the tendency of neutrinos to change identity to other types

of neutrino as they travel through space. Sterile neutrinos are a possible fourth flavor of

neutrino that, unlike the three known flavors, does not couple to ordinary matter. Dark

matter is the hypothetical matter that contains the extra mass beyond that accounted for

by visible matter, which is needed to explain the gravitational behavior of galaxies. Despite

the unexplained observations, the vast majority of observations agree well with the stan-

dard model, leading us to pursue measurements that test the standard model at levels not

previously explored, looking for signs of new physics.

1.2 Approach

There are generally two approaches to looking for physics beyond the standard model

(BSM). The “top-down” approach is to start with a specific BSM theory, with specific

predictions, such as new particles, and search for predictions of the theory. The “bottom

up” approach is to look for deviations from the standard model and parameterize them in

a model-independent way, such as by adding new terms in a generic way to the standard

model Lagrangian. Such deviations will either be found, or there will be limits placed on

how large they can be. In either case, constraints will be placed on what BSM theories could

be consistent with Nature.

This work follows the bottom-up approach, searching for deviations in the couplings of
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the electroweak gauge bosons to each other. Electroweak gauge bosons couple not only to

fermions, but to one another as well. Such couplings determine the cross section with which

the three types of electroweak gauge bosons interact with each other, and are included in

the standard model Lagrangian. Because the standard model gives an exact prescription for

these couplings, measuring the cross section of the interactions is one tool for probing its

limits. There are terms that can be added to the standard model Lagrangian which affect

these couplings, and also have an effect on the helicities of the gauge bosons, as discussed

in Section 2.4. The helicities could potentially affect the angular distribution of the decay

products. Angular distributions are therefore also investigated in this work as a possible

means of placing more stringent limits on anomalous couplings.

The Large Hadron Collider (LHC) is able to collide particles at energies higher than any

previous machine, giving potential for discovery. Deviations from standard model couplings,

if they exist, are suppressed at the energies that have been probed so far. Therefore, looking

at higher energies is one path to search for discovery. This study uses 2016 data produced at

the Compact Muon Solenoid (CMS) detector at the LHC collider in Geneva, Switzerland.
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CHAPTER 2 THEORY

2.1 The Standard Model

The standard model of particle physics is the most complete model we have of nature

at the subatomic level, containing all the fundamental particles observed and all of the

interactions except gravity. The particle content of the standard model is shown in Figure

2.1, with the particles separated first according to their intrinsic angular momentum, or spin,

in units of Plank’s fundamental constant, h̄. (In particle physics, units are used in which h̄;

the speed of light, c; and the proton charge, e are equal to unity.) The particles in Figure

2.1 are color coded according to their spin. The particles with integral spin — unity for

the gauge bosons and zero for the Higgs boson – obey Bose-Einstein statistics, which allows

many of them to occupy the same state in a bound system. The particles with half integral

spin obey Fermi-Dirac statistics, which does not allow more than one of them to occupy the

same state in a bound system. This leads to the famous Pauli Exclusion Principle [2], and

to the behavior of chemistry as we know it. The color of the spin half particles is further

subdivided according to whether or not they participate in the strong interaction, explained

below.

Particles that carry half integer spin are called fermions, and include the constituents

of matter. Leptons are fermions that don’t participate in the strong interaction, and can

be further divided into charged leptons and neutrinos. Quarks – fermions that participate

in the strong interaction – can be divided into up-type, with an electric charge of 2
3

of the

fundamental unit of charge, and down-type, with −1
3

of the fundamental electric charge.

Particles with unit integral spin are known as gauge bosons, and they act as force carriers in

the standard model. The only fundamental particle in the standard model with no spin, the

Higgs boson, is responsible for giving mass to all massive particles in the standard model,

including itself.
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Figure 2.1: The periodic table of elementary particles in the standard model. Particles are
colored according to their spin. Fermions are colored further according to whether they
participate in the strong interaction. [3]

2.1.1 QCD

Quantum Chromodynamics (QCD) is the study of the strong interaction, which affects

quarks, and is mediated by gluons. In addition to being carriers of the strong interaction,

gluons also participate in it, complicating things. Gluons, like photons, are massless, so the

strength of the force should in principle decrease as 1/r2, where r is the distance between

interacting particles. However, because gluons participate in the interaction that they me-

diate, the strength of the interaction increases with distance. This causes a phenomenon

known as asymptotic freedom [4], whereby quarks are only able to exist as free particles at

extremely short distances from one another, or at very high energies. If quarks are separated

from one another, more quark-antiquark pairs will form out of the vacuum, binding up the

free quarks. Therefore, quarks are only observed as bound states.

There are three types of color charge that quarks come in, labelled red, green, and blue,

and three corresponding anticolors for their antiparticles. Therefore, colorless bound states

consist of either three quarks (baryons), three antiquarks (antibaryons), a quark and an

antiquark (mesons), or, as was recently discovered, some combination of these [5].
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2.1.2 Electromagnetism and the Nuclear Weak Interaction

The interaction mediated by the electrically charged W bosons is known as the charged

current weak interaction, while the interaction mediated by the Z bosons is the neutral

current weak interaction. Both of these mediating particles have mass, which limits the

range of their interactions. The electromagnetic interaction is mediated by the massless

photon, and has an infinite range, decreasing as 1/r2, where r is the distance between

particles. While the photon and the Z boson have no charge, and do not participate in the

forces that they mediate, the W boson has an electric charge, as well as a “Z charge” and a

“W charge”, meaning a coupling to the photon, the Z boson, and itself. The W ’s coupling

to itself would lead charged weak interactions to have the same asymptotic behavior as the

strong interaction; however, because W bosons have mass, the range of the interaction is

restricted. Interactions mediated by massive particles have limited effective range, due to

the fact that their potential falls off more rapidly than 1/r2.

2.2 Symmetries

Some of the guiding principles for particle physics have come from observing symmetries

in Nature [2]. A symmetry involves changing a quantity and observing that the laws of Nature

are the same before and after the change. There are generally two kinds of symmetries:

continuous and discrete.

Continuous symmetries involve changing a quantity that can be varied continuously.

They include rotational invariance, spatial-translation invariance, and time-translation in-

variance. Rotational invariance refers to the fact that Nature has no preferred orientation in

space; spatial-translation invariance refers to the fact that Nature has no preference as far

as the origin of one’s coordinate system, and time-translation invariance refers to the fact

that Nature has no preference to the origin of one’s time scale. Other important continuous

symmetries are the principle of relativity, which refers to Nature’s indifference to the motion

of an observer; and gauge invariance, which involves Nature’s indifference to the zero point

of potential energy.
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Discrete symmetries involve changing a quantity that cannot be continuously varied.

There are three important discrete symmetries in particle physics. First, there is parity,

or spatial inversion. This involves changing the sign of all spatial coordinates and leaving

the time coordinate unchanged, creating the equivalent of a mirror image process. Parity

invariance, or P invariance, indicates that an interaction occurs at the same rate as its mirror

image. A parity transformation on a particle’s wave function is

ψ(x, y, z, t)→ P · ψ(−x,−y,−z, t), (2.1)

where P is the intrinsic parity of the system. Performing parity twice must return a system

to its original state, because the mirror image of the mirror image is the original system.

Therefore P , if well-defined, can only take the values of ±1. Next, charge conjugation

parity, or C-parity, involves exchanging every particle with its antiparticle. An interaction

is C invariant if it occurs at the same rate as an identical interaction with antiparticles in

place of particles. The operation of charge conjugation is given by

ψ(x, y, z, t)→ C · ψ(x, y, z, t), (2.2)

where ψ represents the antiparticle of ψ. Here, C is the intrinsic C-parity of the system,

and if well-defined, can only take the values of ±1, because performing a C-parity operation

twice must return the original state; the antiparticle of an antiparticle is the original particle.

Finally, there is time reversal invariance, or T invariance. This involves inverting the sign

of the time coordinate while leaving the spatial coordinates unchanged. An interaction is T

invariant if it occurs at the same rate as its backward-in-time counterpart. A time reversal

transformation of a system is given by

ψ(x, y, z, t)→ ψ∗(x, y, z,−t), (2.3)
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where ψ∗ represents the complex conjugate of ψ. Unlike the other two discrete symmetries,

time reversal does not correspond to any intrinsic quantity to conserve; there is no intrinsic

T-parity of a system. This is the reason for the lack of an overall T-factor outside the

transformed wave function. For discrete symmetries, only linear operators correspond to

conserved quantities [2], and without a conservation law to test it, an intrinsic T-factor is

fundamentally unmeasurable, and therefore meaningless. The complex conjugation means

that the time reversal operator is an antilinear rather than a linear operator. Performing time

reversal twice will give back the original system, as with the other two discrete symmetries.

2.3 Electroweak Symmetry Breaking

The standard model Lagrangian for the electroweak interaction is based on SU(2)L ×

U(1)Y symmetry [6]. Before being broken by the Higgs mechanism, the Lagrangian for

trilinear gauge couplings is

L = −1

4
~W µν · ~Wµν −

1

4
BµνBµν − g ~Wµ × ~Wν , (2.4)

where g is a coupling constant. There are three W fields represented by the vector ~W =

(W1,W2,W3), and a B field.

The double index tensor is defined as

Xµν = ∂µXν − ∂νXµ. (2.5)

With a change of coordinates, the terms can be rearranged. Four new fields can be

defined: A, Z, and W±; defined as

A = W3 sin θW +B cos θW , (2.6a)

Z = W3 cos θW −B sin θW , (2.6b)
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and

W± =
1√
2

(W1 ∓ iW2). (2.6c)

Then, the Lagrangian is

L = −1

4
AµνAµν −

1

4
ZµνZµν −

1

2
W µν

+ W−
µν +O(g) +O(g2), (2.7)

where A is the photon field, Z is the neutral weak boson field, and W± are the charged weak

boson fields. The O(g) term represents the trilinear gauge couplings that this work is based

on, while the O(g2) term represents quartic couplings. The O(g) term expands to give

LWWW3 = ig
(
(W−

µνW
µ
+ −W

µ
−W

+
µν)W

ν
3 +W−

µ W
+
ν W

µν
3

)
. (2.8)

Expanding W3 into A and Z and defining e = g sin θW , Equation 2.8 becomes

LWWW3 = LSM
WWZ + LSM

WWγ, (2.9)

with LWWZ and LWWγ represented by the equation

LSM
WWV = igWWV

(
(W †

µνW
µ −W †µWµν)V

ν +W †
µWνV

µν
)
. (2.10)

In Equation 2.10, W † has been used in place of W− and W has been used in place of

W+. Here, V represents either the photon field A, or the Z field. The constant igWWV

represents e in the photon case and e cot θW in the Z case. Equation 2.10 represents the

vertex highlighted in Figure 2.2, showing the trilinear interaction of the W field to that of

the Z field or the electromagnetic (photon) field. There are also quartic couplings of the

fields, shown in Figures 2.3 and 2.4, which are not studied in this work.
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Figure 2.2: The trilinear couplings of the electroweak gauge bosons. This thesis is based on
searching for deviations in this coupling from the standard model prediction.

Figure 2.3: Standard model electroweak quartic gauge coupling with four W s.

Figure 2.4: Standard model electroweak quartic gauge couplings with W s and neutral bosons.
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2.4 Anomalous Couplings

Electroweak gauge bosons couple to each other as well as to fermions. In the standard

model, at tree level, there are two trilinear gauge couplings; WWZ and WWγ. The result

of Equation 2.10 completely determines these couplings. Assuming only Lorentz invariance

[7], a more general Lagrangian can be written:

LWWV = igWWV

(
gV1 (W †

µνW
µ −W †µWµν)V

ν + κVW
†
µWνV

µν +
λV
M2

W

W †ν
µ W

ρ
ν V

µ
ρ +

+igV4 W
†
µWν(∂

µV ν + ∂νV µ)− igV5 εµνρσ(W †
µ∂ρWν − ∂ρW †

µWν)Vσ + (2.11)

+κ̃VW
†
µWνṼ

µν +
λ̃V
M2

W

W †ν
µ W

ρ
ν Ṽ

µ
ρ

)
,

where the terms in color are the parameters under consideration. Those colored blue are 1

in the standard model while those colored red are 0 in the standard model. The term X̃µν

is shorthand for 1
2
εµνρσXρσ [7]. The following quantities are defined for convenience:

∆κγ = κγ − 1, (2.12a)

∆κZ = κZ − 1, (2.12b)

∆gZ1 = gZ1 − 1, and (2.12c)

∆gγ1 = gγ1 − 1. (2.12d)

Equation 2.11 contains seven independent parameters for each vertex, giving a total of four-

teen altogether. This number can be narrowed down by making additional assumptions.

Requiring electromagnetic gauge invariance forces gγ1 = 1 and gγ4 = gγ5 = 0 in Equation 2.11.

This reduces the number of independent anomalous parameters to eleven. If SU(2)⊗ U(1)

gauge symmetry is also included [7], more terms can be eliminated, using the following rela-

tions:
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λZ = λγ = λ, (2.13a)

λ̃Z = λ̃γ = λ̃, (2.13b)

∆κZ = ∆gZ1 −∆κγ tan2 θW , (2.13c)

κ̃Z = −κ̃γ tan2 θW , and (2.13d)

gZ4 = gZ5 = 0. (2.13e)

This reduces the number of independent anomalous parameters to five. Three of them,

∆gZ1 , ∆κγ, and λ, conserve both parity and charge conjugation parity, while the other two,

κ̃γ and λ̃ violate either parity or C-parity.

If the anomalous parameters are assumed constant with respect to the center-of-mass en-

ergy, the Lagrangian will give results violating unitarity at sufficiently high energies [7]. For

this reason, form factors are sometimes used to preserve unitarity. The anomalous couplings

then take the following form:

∆gZ1 −→
∆gZ1(

1 +
s

Λ2
FF

)n , (2.14a)

∆κγ −→
∆κγ(

1 +
s

Λ2
FF

)n , (2.14b)

λ −→ λ(
1 +

s

Λ2
FF

)n , (2.14c)

κ̃γ −→
κ̃γ(

1 +
s

Λ2
FF

)n , (2.14d)
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λ̃ −→ λ̃(
1 +

s

Λ2
FF

)n . (2.14e)

Here, s is the square of the center of mass energy, ΛFF is the energy cutoff scale of the form

factor, and n is an integer.

The current practice of the CMS collaboration is to assume that ΛFF is infinite, or

equivalently, that the value of n is 0. Constraints already placed on the anomalous parameters

put them well within unitarity bounds at present collider energies. If non-zero values exist

for any of these parameters, and are measured at present energies, other operators may come

into play at higher energies to “rescue” unitarity.

Another way of expressing the anomalous parameters, is through effective field theory

operators [7]. This involves writing the Lagrangian as the standard model Lagrangian with

higher order operators appended to it. Including operators of dimension six or below, this

gives

L = LSM +
cWWW

Λ2
OWWW +

cW
Λ2
OW +

cB
Λ2
OB +

c̃WWW

Λ2
ÕWWW +

c̃W
Λ2
ÕW . (2.15)

The operators in Equation 2.15 are defined as,

OWWW = Tr[ŴµνŴ
νρŴ µ

ρ ], (2.16a)

OW = (DµΦ)†Ŵ µν(DνΦ), (2.16b)

OB = (DµΦ)†B̂µν(DνΦ), (2.16c)

ÕWWW = Tr[
ˆ̃
W µνŴ

νρŴ µ
ρ ], (2.16d)

ÕW = (DµΦ)†
ˆ̃
W

µν

(DνΦ). (2.16e)
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Here, Φ is the Higgs field, and the operators in Equation 2.16 are defined as follows:

Dµ = ∂µ + i
g

2
σiW

i
µ +

g′

2
Bµ, (2.17a)

Ŵµν = i
g

2
σi
(
W i
µν + gεijkW

j
µW

k
ν

)
, (2.17b)

B̂µν = i
g′

2
Bµν , and (2.17c)

ˆ̃
W µν =

1

2
εµνρσŴρσ. (2.17d)

Here, g′ = g tan θW and σi are the Pauli spin matrices. The effective field theory coefficients;

cW , cWWW , c̃B, c̃W , and cB; are always expressed divided by a factor of Λ2, which represents

an energy scale of new physics. The actual parameters of interest therefore are the ratios of

of the coefficients with the energy scale. Neither the coefficients nor the energy scale have

any existence independent of the other.

The translations between the effective field theory coefficients and the traditional param-

eters are as follows:

cW
Λ2

=
2

m2
Z

∆gZ1 , (2.18a)

cWWW

Λ2
=

√
2

12GFm4
W

λ, (2.18b)

c̃W
Λ2

=
2

m2
W

κ̃γ = − 2

m2
W

1

tan2 θW
κ̃Z , (2.18c)

c̃WWW

Λ2
=

√
2

12GFm4
W

λ̃, and (2.18d)

cB
Λ2

=
2

m2
W

∆κγ −
2

m2
Z

∆gZ1 =
1

tan2 θW
(

2

m2
Z

∆gZ1 −
2

m2
W

∆κZ). (2.18e)
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2.4.1 Present Analysis

This analysis studies events where two incoming partons form an electroweak gauge

boson, which then decays into two more gauge bosons, as shown in Figure 4.1. This results

in either a pair of W s or a W and a neutral gauge boson. For the latter case, only events

where the neutral particle is a Z boson are considered. The final state is a ‘boosted’ jet

along with a lepton and missing energy. The events in this study involve gauge bosons of

sufficiently high energy that when they decay hadronically, the two jets are reconstructed as

a single ‘fat’ or ‘boosted’ jet by the jet reconstruction algorithm. The two jets are back to

back in the gauge boson’s rest frame, due to conservation of momentum. Boosting from the

gauge boson’s rest frame to the lab frame, these jets tend to be closer together the higher the

boson’s momentum. Because this analysis selects leptons with high pT , this leads to hadronic

gauge bosons with high momentum as well. When the final state is a pair of W bosons, the

couplings involve a mixture of WWZ and WWγ vertices, because the intermediate neutral

gauge boson is a linear combination of the photon and Z boson. However, when the final

state is a W and a Z boson, the second vertex is not involved.
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CHAPTER 3 EXPERIMENTAL SETUP

The analysis uses 2016 data collected at the Large Hadron Collider (LHC), with the

Compact Muon Solenoid (CMS) detector, in Geneva, Switzerland. The accelerator facility

used to generate the proton–proton collisions is described in Section 3.1 and the relevant

aspects of the CMS detector are discussed in Section 3.2.

3.1 Large Hadron Collider

The LHC [8, 9] is a particle accelerator (Figure 3.1) located underground, beneath the

border of Switzerland and France, northwest of Geneva, Switzerland (Figure 3.2). Construc-

tion of the LHC was approved by the European Council for Nuclear Research (CERN) in

1990. The LHC was built to search for the Higgs boson, found in 2012, as well as to search for

possible constituents of dark matter or proposed extensions of the standard model. The LHC

is a circular proton-proton superconducting synchrotron, 27 km in circumference. Counter

circulating beams of protons collide at four locations corresponding to the four major exper-

iments. The energy available for the collision is proportional to the incident beam energy.

Protons, being more massive than electrons, lose less energy to synchrotron radiation from

their centripetal acceleration, allowing for higher energies to be achieved. The disadvantage

of protons is that, unlike electrons, they are composite objects. This means that the collisions

are between partons (quarks and gluons) within the proton, with a fraction of the proton’s

momentum that is not known. The LHC’s design called for a 14 TeV center-of-mass energy.

It ran at a center-of-mass energy of 7 TeV in 2010 and 2011, and its energy was increased

to 8 TeV in 2012. It was shut down for about two years in 2013 and 2014, and restarted at

the end of 2015 with its current center-of-mass energy of 13 TeV.

The process of producing beams of protons begins with extracting protons from molecules

of hydrogen gas. A quantity of H2 gas is ionized, yielding H− and H+ ions that are sepa-

rated in an electric field. The H+ ions (protons) are separated into bunches that begin the

acceleration process [11]. Proton beams are first accelerated by a linear accelerator (LINAC

2), to about 50 MeV, then enter the Proton Synchrotron Booster (PSB), which accelerates
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Figure 3.1: Accelerator infrastructure at CERN, showing interconnection of machines and
transfer of particles between them. [10].

them further to 1.4 GeV [11]. They’re then fed into the Proton Synchrotron to be acceler-

ated up to 26 GeV and then to the Super Proton Synchrotron to accelerate them further to

450 GeV [11]. They are then fed into the LHC, in two beams, going in opposite directions.

The protons are fed in bunches, around 1.15× 1011 protons in a bunch [8]. There are 2808

bunches per ring, spaced about 25 ns apart [11]. When all the bunches have been injected

into the LHC at 450 GeV, acceleration of the protons begins. This is called a fill. After

about 20 minutes, they reach their final energy of 6.5 TeV.

3.1.1 Luminosity

The number of times a given type of process occurs depends on the process’s cross section,

σ, multiplied by the collider’s integrated luminosity:

N = L × σ, (3.1)
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Figure 3.2: The LHC has a circumference of 27 km, and lies underground, spanning two
countries. [12]

where the integrated luminosity is the instantaneous luminosity integrated over time, L =∫
L dt.

The instantaneous luminosity, with units of inverse area per time, is given by [11]

L =
γνNBN

2
p

4πεnβ∗
F, (3.2)

where γ is the Lorentz factor of the protons (6929 for a proton energy of 6.5 TeV), ν is the

frequency of collisions (40 kHz for 25 ns spacing), NB is the number of bunches (2808 as

stated above), Np is the number of protons in a bunch (1.15 × 1011 as stated above), εn is

the normalized transverse emittance, β∗ is the betatron function, and F is a dimensionless

geometrical reduction factor accounting for the beams’ crossing angle. With a betatron

function of about 0.55 m, an emittance of 3.75 µm, and a geometrical reduction factor of

0.836 [8], this works out to a luminosity of roughly 3× 1034 cm−2sec−1.

3.2 The CMS Detector

The CMS detector is one of four main detectors at the LHC. It is located underground,

in the French village of Cessy, north of the main CERN facilities. It is located at one of the

four interaction regions of the LHC where the beams of particles are brought into collision.

The CMS detector is built around – and within – a superconducting solenoid with an

internal diameter of 6 m (Figure 3.3), producing a solenoidal magnetic field of 3.8 T. The
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Figure 3.3: Overview of the CMS detector with its multiple subsystems. [13]

CMS solenoid has the highest stored energy of any magnet to date. The detector is built in

concentric cylinders, each system nesting inside the others, like Russian nesting dolls. The

innermost region of the detector is the silicon tracker. This measures the tracks of charged

particles, out to a radius of 1.1 meters. Outside the silicon tracker is the electromagnetic

calorimeter (ECAL) which measures energy deposits from electrons and photons. Further

outside is the hadronic calorimeter (HCAL), which measures energy from hadrons that come

out of the collisions. Outside of the ECAL and HCAL is the superconducting solenoid

already mentioned. Outside the solenoid is the muon system. Muons are typically the only

particles to make it out this far, so a special system for measuring them is located outside

the other systems. The muon system is interleaved with the return yoke of the solenoid.
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3.2.1 Solenoid Magnet

The solenoid magnet encloses all of the detector subsystems except for the muon tracking

system and has an inner diameter of 6 m, and is 12.5 m in length. A nearly constant 3.8

T magnetic field exists inside the solenoid. Outside the solenoid is a steel return yoke, fully

saturated to about 2 T. The magnetic field is crucial to measurements of particle momentum.

The well-known Lorentz force law,

F = qv ×B, (3.3)

when applied to a magnetic field solely in the z-direction (B = Bẑ), and combined with the

centripetal force equation,

Fc = γ2mv
2

R2
, (3.4)

leads to a relation between radius and transverse momentum. This equation,

R = γ
pT
|q|B

, (3.5)

is used to compute the transverse momentum of particles, if the absolute value of their charge

is known. The sign of the charge can be inferred from the direction of the curvature.

3.2.2 Silicon Tracker

The silicon tracker in CMS contains semiconductor tracking devices [14]. It is the in-

nermost part of the detector, inside the solenoid, as shown in Figure 3.4, with a length of

5.8 m and a cylindrical diameter of 2.5 m. The innermost part consists of silicon pixels,

while silicon strips are used further out. Silicon diodes produce currents when charged par-

ticles pass through them. Particles pass through more than one layer, allowing the tracks

of charged particles to be inferred. The tracks are then used to calculate both the position

and the momentum of the particle. This is necessary to determine the origin of a particle

(decay product, from primary interaction point). The silicon tracker has an area of 200 m2

of silicon sensors. The dimensions are designed to keep the particle flux per collision low.
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Figure 3.4: The front view of a module forming part of the Silicon Tracker. [15]

The pixel detector barrel has three layers, located 4.4, 7.3, and 10.2 cm from the beam. The

innermost layer has a hit rate density of around 1 MHz/mm2. With 100 by 150 µm pixels,

this gives an occupancy on the order of 10−4 hits per sensor per bunch crossing. Further

out, with a reduced flux, silicon strip detectors are used, 10-25 cm in length and 80-180 µm

in width.

3.2.3 Electromagnetic Calorimeter

The electromagnetic calorimeter (ECAL) is designed to measure the energy of electrons

and photons [16, 17]. Because electrons and photons interact with the solenoid material,

the ECAL is positioned inside the solenoid, to measure the particles before they encounter

the material. This creates a need for compactness. It is made of lead tungstate (PbWO4)

crystals. When particles collide with the crystals, light is produced with an intensity propor-

tional to the energy of the particles. Photodetectors then collect the light. Lead tungstate

was chosen in part due to its short radiation length of 0.89 cm. The radiation length is the

average length that electrons will travel in the material before their energy is 1/e, or around

37%, of their original energy, where e is the base of natural logarithms. Lead tungstate has

a Molière radius of about 2.2 cm. The Molière radius is the radius at which 90% of the

electromagnetic showering is contained. The small Molière radius was another reason for

the choice of lead tungstate. Another property of lead tungstate that makes it desirable

is the short scintillation decay time of the crystals – the delay between absorbing energy

and emitting light – of around 25 ns for 80% of the energy to be emitted as light. The
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barrel portion of the ECAL has a pseudorapidity range of |η| < 1.479 and consists of 61,200

crystals, while the endcap portions cover the pseudorapidity range of 1.566 < |η| < 3.0 and

consist of 7,324 crystals each. Pseudorapidity is defined by the relation

η = − ln

(
tan

θ

2

)
, (3.6)

where θ is the polar angle from the beam line. The crystals have a cross section of 2.2 cm by

2.2 cm along the geometric line facing the interaction point. The gap in pseudorapidity is

due to cabling and tracker support structure. The crystal thickness in the barrel (endcap) is

23 (22) cm, which corresponds to about 25.8 (24.7) radiation lengths. The energy resolution

of the ECAL is given by [18]

(
δE
E

)2

=

(
S√
E

)2

+

(
N

E

)2

+ C2, (3.7)

where S is a stochastic term and has a value of 0.028 GeV
1
2 , N is a noise term, with a value

of 0.12 GeV, and C is a constant term with a value of 0.30%.

3.2.4 Hadronic Calorimeter

The hadronic calorimeter (HCAL) is the part of the CMS detector that is designed to

measure the energy of both charged and neutral hadrons [19, 20]. It lies just outside the

ECAL. The HCAL consists of active material placed between brass absorber plates. It has

a total coverage of |η| < 5.0. The active elements are 4 mm thick plastic scintillator tiles.

The barrel has a coverage up to |η| < 1.3 and the endcaps cover 1.3 < |η| < 3.0. The HCAL

has a varying thickness, ranging from 5.82 to 10 nuclear interaction lengths. The nuclear

interaction length is the mean free path of a particle before undergoing an inelastic hadronic

collision. There is also a forward HCAL (HF) located close to the beam pipe, with a coverage

of 3.0 < |η| < 5.0. The HF encounters energy deposits five to ten times higher than the

rest of the detector, and thus needs to be very radiation hard. It is constructed of quartz

fiber Cherenkov detectors. These fibers are embedded in steel to induce electromagnetic and
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hadronic showers. Measuring the development of showers is assisted by the fact that half of

the quartz fibers extend the full length of the detector, while the other half start 22 cm away

from the interaction point. The energy resolution for the HCAL can be given by Equation

3.7, with the stochastic term, S, having a value of 1.15 GeV
1
2 , the constant term, C, having

a value of 5.5%, and the noise term, N , being negligible.

3.2.5 Muon System

Muons, being heavier than electrons by a factor of around 200, are much less susceptible

to radiative energy loss, and pass mostly through the ECAL and HCAL systems. The

muon system is outside of the solenoid, and interleaved inside of a steel return yoke. This

arrangement is designed to ensure that nearly all (well over 99%) of the particles that enter

the muon system are muons. The muon system consists of three different subsystems using

different types of gaseous detectors: drift tubes (barrel), cathode strip chambers (endcaps),

and resistive plate chambers (barrel and endcaps). When electrically charged particles pass

through a gas and ionize the gas molecules, the electric field will cause the ionized particles

to drift toward the anode where a signal is read out.

Drift Tube System

The barrel portion of the muon detector, with a coverage in pseudorapidity of |η| < 1.2,

is composed of drift tube (DT) chambers [21]. The DTs are rectangular aluminum tubes 2.4

m long, with a cross section of 13 mm by 42 mm. Each tube has a beryllium tungsten anode

wire, 50 µm in diameter, and plated in gold. The interior of each DT contains aluminum

strips to shape the electric field, shown in Figure 3.5. The gas inside the DTs is a mixture

of 85% argon and 15% carbon dioxide. Passing charged particles ionize the gas and the

electric field accelerates the electrons toward the anode wire, and a signal is sent in the

form of an electrical pulse to the anode where a signal is read out. The wires in the outer

DTs are parallel to the beam direction, while the inner DTs are perpendicular to the beam

direction, providing a measure of the bending of muons in the magnetic field. There are
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Figure 3.5: Cross section of a drift tube. The plates at the top and bottom of the cell are
at ground potential. The potentials applied to the electrodes are +3600V for wires, +1800V
for strips, and -1200V for cathodes. [15]

a total of around 172 thousand cells, giving a position resolution of around 100 µm and a

timing resolution of a few nanoseconds.

Cathode Strip Chambers

The forward regions of the muon detector, with a pseudorapidity range of 0.9 < |η| < 2.4,

sits in a non-uniform magnetic field. The Cathode Strip Chamber (CSC) system is in this

region [22]. CSCs are constructed of trapezoidal, multi-wire chambers, as shown in Figure

3.6. Each chamber contains six layers of cathode strip chambers, each filled with an Ar-CO2-

CF4 gas mixture. Copper cathode strips span the radial direction at a constant Φ. Each

layer has a plane of anode wires, 50 µm in diameter, running perpendicular to the strips

and separated by varying distances (∼3.5 mm). When a muon passes through a chamber,

an avalanche of electrons is generated at nearby anode wires and a mirror pulse of positive

ions in the cathode strips. The CSCs are arranged perpendicular to the beam direction, and

give full coverage in Φ. The innermost station for each endcap is composed of three rings

of CSCs in the radial direction, while other stations have two rings, as shown in Figure 3.7.
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Figure 3.6: Layout of a CSC made of seven trapezoidal panels. The panels form six gas gaps
with planes of sensitive anode wires. [15]

There are a total of 540 CSC chambers.

Resistive Plate Chambers

Resistive Plate Chambers (RPC), are located in both the barrel and endcap regions, and

provide a fast trigger signal [23]. The RPCs are constructed from a thin layer of readout

strips between electrodes, held at high electric potential, and are filled with C2H2F4 gas.

When a muon passes through, the sum of the signal between the two gaps is read out at the

center plate. The plates are separated by 2 mm, ensuring that the charge is detected within

25ns, necessary to assign the muon to the correct bunch crossing. The RPCs are dispersed

in six layers between the DTs in the barrel region, and in three layers between the CSCs in

the endcap region.

3.2.6 Trigger and Data Acquisition

The LHC provides high interaction rates. For protons, the interval is 25 ns between

collisions, giving a crossing frequency of 40 MHz [24, 25], or 40 million events per second.

Because it is not currently possible to store and process such a large amount of data, a
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Figure 3.7: A photo of the CMS detector, showing ME4 of the CSCs. The outer ring here
consists of 36 chambers and the inner ring contains 18 chambers. The chambers in the inner
and outer rings overlap to give continuous coverage. [15]

reduction in rate has to be achieved. Only about 1000 events per second are actually recorded

and stored. The trigger system [24] is designed for this task. There are two trigger steps:

the first is the Level-1 (L1) Trigger and the second is the High-Level Trigger (HLT). The

flow of data in the L1 Trigger is shown in Figure 3.8. The L1 trigger is a hardware system

built from programmable electronics [26]. Data from the HCAL and ECAL are sent to a

Global Calorimeter Trigger (GCT), while data from the muon systems are sent to a Global

Muon Trigger (GMT). The GCT and GMT then send their data to a Global Trigger (GT),

which makes a final decision as to whether or not to keep an event.

Initially, the L1 trigger system handles the muon and calorimeter system information

independently. The energy and shapes of ECAL deposits contribute to photon and electron

candidates, while HCAL energy deposits are used to identify clusters of hadrons. Particle

candidates are sorted by pT , and the total energy of the event is computed. This information

is sent to the global trigger for a decision. The muon trigger system builds track candidates

by matching hits in its three subsystems (CSC, RPC, and DT). Track finders in the barrel,

endcap, and overlap region combine the track segments to form muon candidates. The
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Figure 3.8: The L1 Trigger system [24] uses several components of the CMS detector for its
operation. Triggers from the various muon systems send information to the Global Muon
Trigger (GMT), while the Global Calorimeter Trigger (GCT) and the GMT send their in-
formation to the Global Trigger(GT).

muon candidates are sorted by pT , then sent to the global trigger. The global trigger uses

the information from the muon and calorimeter triggers to test physics objects and physics

object combinations, based on built in kinematic criteria, before making a decision to accept

or reject an event. The set of conditions by which an event is evaluated are organized into

what’s called trigger paths. Trigger paths serve to sort the dataset by the sets of criteria

they pass. For paths with a high rate, such as leptons with a relatively low pT threshold, a

trigger path may be prescaled. Prescaling involves only accepting the trigger every nth time,

where n is some integer greater than one.

Data collected by the detector system is read and stored into 40 MHz buffers to wait for

a trigger decision. If the L1 trigger accepts an event, it is sent for further analysis over a 100

kHz bandwidth network. To enforce the bandwidth, it is sometimes necessary to throttle the

trigger. The reduction in event readout, referred to as dead time, is generally kept under 1%

of events. Events that are accepted by the L1 trigger go through additional filtering by the
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HLT before being stored to tape. The HLT [24] is a software system running on a processing

farm with access to event information from all detector systems. The HLT reaches a decision

within a time window of less that 200 µs. As with the L1 trigger, evaluation is divided into

trigger paths. Computationally expensive operations like track building are performed at

the final stages, after many events have been rejected.
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CHAPTER 4 SIGNAL AND BACKGROUND PROCESSES

4.1 Signal Process

The W and Z particles are measured indirectly through their decay products. Because

their lifetimes are on the order of ∼ 10−25 s, they do not live long enough to reach the

detector. Tables 4.1 and 4.2 show the world average branching fractions of the W and Z

bosons.

The majority of WW and WZ events involve fully hadronic decays, meaning that both

gauge bosons decay into hadrons. This decay channel is not useful for us, because there is

no reliable way to distinguish it from other processes that produce only jets, such as QCD.

There are two fully leptonic channels, lllν and lνlν, which involve both bosons decaying

leptonically. Past CMS studies have focused on such leptonic channels [27, 28]. These

channels, however, suffer from low statistics, due to the fact that the majority of W and Z

decays are hadronic.

There are then two semileptonic channels, lljj and lνjj, where one boson decays hadron-

ically and the other leptonically. The semileptonic channels offer a compromise, giving more

statistics than fully leptonic channels, at the expense of dealing with jets in the final state.

This analysis was based on measurements of the lνjj channel, with the charged lepton

being either an electron or a muon. Events with both positively and negatively charged

leptons were used. The lνjj channel has the advantage of higher statistics than the lljj

Figure 4.1: The channel that was used for this analysis is the lνjj channel, with a W decaying
leptonically into a charged lepton and a neutrino, and a W or Z decaying hadronically. The
charged lepton was either an electron or a muon.
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Table 4.1: Decay modes of the W boson.

W decay mode fraction
hadrons 67%
e ν 11%
µ ν 11%
τ ν 11%

Table 4.2: Decay modes of the Z boson.

Z decay mode fraction
hadrons 70%
ν ν 20%
e e 3.3%
µ µ 3.3%
τ τ 3.3%

channel, at the expense of dealing with a neutrino. Figure 4.1 shows the tree level Feynman

diagram for the decay channel used in the analysis. There have been past studies in semilep-

tonic channels [29] at energies of 7 and 8 TeV. The study that this thesis builds off of [30]

was the first to look at the semileptonic channel at 13 TeV.

4.2 Background Processes

There were four processes that contributed to background in this analysis. The primary

background process was W+jets, where a W boson is produced along with one or more

jets, and the W decays leptonically, mimicking the signal signature, as shown in Figure

4.2. The secondary background was tt, involving a top-antitop quark pair decaying into W

bosons and b-quarks, as shown in Figure 4.3. Finally, there was a minor background from

single top, which involves a W decaying into a top-bottom quark pair, and the top decaying

into a W and b-quark, as shown in Figure 4.4. In addition to these background processes,

general QCD events that involve jets faking gauge boson decays and leptons were taken

into account. These processes were not simulated with Monte Carlo, but were modeled by

data, as described in Chapter 7.
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Figure 4.2: Example W+jets background process.

Figure 4.3: Example tt background process.

Figure 4.4: Example single top background process.



31

CHAPTER 5 PARTICLE IDENTIFICATION, SELECTION, AND

RECONSTRUCTION

General Event Selection

Various selection requirements were placed on events to eliminate background processes.

Events were required to have at least one well-reconstructed collision vertex. The recon-

structed collision vertex with the highest summed p2
T was designated as the primary vertex

[31].

The particle flow algorithm [32] was used to reconstruct and identify each particle in an

event using information from the different elements of the CMS detector.

5.1 Electron Selection

For electron events there must be an electron within the pseudorapidity range of |η| < 2.5,

with a minimum pT of 50 GeV. The pT trigger threshold for electron candidates was 45

GeV, and they had to be within the pseudorapidity range of |η| < 2.5, but outside of the

1.44 < |η| < 1.57 range. The latter requirement was to avoid poor reconstruction due to a

gap between the barrel and endcap of the ECAL system. An additional trigger requirement

existed if its pT was less than 115 GeV; an isolation cone of ∆R < 0.3 was placed around

electrons whose pT were less than 115 GeV, where

∆R =

√
(∆η)2 + (∆φ)2, (5.1)

is the distance in the rapidity-azimuthal plane between two objects. The scalar sum pT from

all the particles in the cone must be less than 5 GeV;
∑

i |pT i| < 5 GeV. In addition to these

requirements, there had to be no more than one lepton, to avoid fully leptonic tt events.

For the purposes of rejection, there were looser requirements on leptons. In order to be used

to reject an event, an electron had to have a pT of greater than 35 GeV. Electrons were

reconstructed through a combination of information from the central tracking detector and

the ECAL [33, 34].
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5.2 Muon Selection

For muon events there had to be a muon with pT greater than 53 GeV and within the

pseudorapidity range of |η| < 2.4. Muons were reconstructed by combining tracks in the

muon system and inner tracker [35, 36]. The pT trigger threshold for muon candidates was

50 GeV, and they had to be within the pseudorapidity range of |η| < 2.4. The isolation

requirement for muons was that the scalar sum of the pT tracks within ∆R < 0.3 be less

than 10% of the muon’s pT . The loose pT requirements for a muon for the purpose of rejecting

an event with more than one lepton, were that it have a pT greater than 20 GeV.

5.3 Jets and Jet Selection

Because they have color charge, quarks do not exist as free particles, but instead form

into hadrons. This process is called hadronization, or fragmentation [6]. The color field

around a quark creates multiple quark-antiquark pairs, leading to multiple particles being

detected. A cluster of particles that appears in the detector is then identified as a jet. There

is no definitive answer to the question of how many jets are present in an event. Jets are

defined by jet algorithms, and different algorithms may define different numbers of jets. In

this study, the jet pairs coming from the W or Z bosons were boosted, with an energy of at

least 200 GeV, and tended to appear as a single ‘fat’ jet [30]. The jet algorithm used in this

analysis was the anti-kT algorithm [37]. The anti-kT algorithm is known as a recombination

algorithm. It works by defining a distance between pairs of particles, performing successive

recombinations of pairs of closest particles, and stopping when all particles are too far apart.

The distance, dij, is defined as

dij = min
(
k2p
t,i , k

2p
t,j

) (
∆y2

ij + ∆Φ2
ij

)
/R2, (5.2)
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where ∆y and ∆Φ are the rapidity and azimuthal angle differences between two particles,

and kt is the transverse momentum. Rapidity is defined by the relation

y =
1

2
ln

(
E + pz
E − pz

)
, (5.3)

where E is a particle’s energy and pz is the component of the particle’s momentum along the

beam direction. The exponent p has different values for different jet algorithms, but it has a

value of −1 for the anti-kT algorithm. The constant R is a dimensionless parameter that can

be varied within a single algorithm. There were two types of jets that were reconstructed

for this analysis, both constructed using the anti-kT algorithm. Jets formed with a distance

parameter of R=0.4 and R=0.8 are referred to as AK4 and AK8 jets, respectively. The AK8

jets were the jets that were used to identify signal events, while the AK4 jets were used to

reject events involving top quark decays. Each event was required to have an AK8 jet with

a minimum pT of 200 GeV, and within the pseudorapidity range of |η| < 2.4. In order to

reduce top background, events with AK4 jets of pT greater than 30 GeV and within the

same pseudorapidity range were rejected. The AK8 jet with the highest pT was used for the

hadronically decaying gauge boson.

5.3.1 PUPPI

Pileup (PU) occurs when particles from other proton-proton collisions appear to come

from the collision of interest. Because they don’t come from the collision of interest, identify-

ing and removing these particles is important. The method for removing PU in this analysis

was PileUp Per Particle Identification (PUPPI) [38]. Tracking is available for charged par-

ticles, and this allows for determination of whether a given particle is from the collision of

interest or not. Using this knowledge from charged particles, information can be gained

about the pT spectrum of PU versus non-PU particles. This knowledge is used to assign a

value to neutral particles ranging from 0 to 1, indicating the likelihood that it comes from

the collision of interest.
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5.3.2 Soft Drop Mass

A useful quantity in the analysis was the softdrop mass of the jet [39]. Soft Drop is a

procedure to remove soft and wide-angle radiation from a jet in order to mitigate effects

of pileup, initial state radiation (ISR), and underlying event (UE). Radiation emitted by

incoming particles before they collide is ISR. Particles that come from the remnants of the

protons involved in the collision of interest are UE particles. The softdrop procedure involves

breaking a jet of radius R0 into two subjets. If the condition

min(pT1, pT2)

pT1 + pT2

> zcut

(
∆R12

R0

)β
(5.4)

is met then the jet is kept as is. In Equation 5.4, ∆R12 is defined as the distance in the

rapidity-azimuthal plane, as defined in Equation 5.1, between subjets 1 and 2, Otherwise,

the smaller pT subjet is dropped and the procedure is applied again, with two new subjets.

The variables zcut and β are adjustable depending on how much grooming is needed. In the

analysis, zcut was set to 0.1 and β was set to 0.

5.3.3 N-Subjettiness

Another useful quantity for jet selection in this analysis was N-subjettiness [40]. For a

jet with N subjet candidates, N-subjettiness is defined as,

τN =
1

d0

∑
k

pT,k min{∆R1,k,∆R2,k, ...,∆RN,k}, (5.5)

where pT,k is the pT of the kth constituent particle, ∆Rj,k is the distance between the kth

constituent particle and the jth subjet candidate, as defined in Equation 5.1. The overall

normalization factor in Equation 5.5, denoted as d0, is defined as

d0 = R0

∑
k

pT,k, (5.6)
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where R0 is the jet radius. The ratio τ21 = τ2/τ1 was used to place selections on jets in this

analysis.

5.4 Missing Transverse Momentum Selection

Neutrinos are not measured directly. Instead, their existence must be inferred from

momentum imbalances. In this study, their kinematic values were inferred using the missing

transverse energy (MET) in the collisions, the kinematics of the lepton, and constraining the

lepton and neutrino to the W boson mass. Transverse energy is defined in terms of mass

and transverse momentum as,

E2
T = p2

T +m2. (5.7)

In the case of neutrinos, mass is (effectively) zero, and so ET and pT are equivalent. The

minimum MET for an event was 110 GeV for an electron event and 40 GeV for a muon

event, in order to reject multi-jet QCD events. The higher threshold for the electron channel

was placed in order to avoid QCD jets mismeasured as electrons.

5.4.1 Calculating Longitudinal Neutrino Momentum

The components of momentum perpendicular to the beam axis (transverse momentum)

are zero in the initial state of colliding protons, and therefore must be zero after the collision.

The longitudinal momentum of the collision cannot be balanced out in this way, because

particles whose momentum is nearly all longitudinal will travel down the beam pipe and not

be detected. The transverse momentum imbalance of measured final state particles was used

to estimate the neutrino’s transverse momentum.

The energy-momentum relation for the leptonic W is

W 2
m = (lE + νE)2 − (~lpT + ~νpT )2 − (lz + νz)

2. (5.8)

Here, lE and νE are the lepton and neutrino energies, lz and νz are the lepton and neutrino

z momenta, and lpT and νpT are the transverse momentum for the lepton and neutrino. The

leptonic W was assumed to have its pole mass of 80.4 GeV for the purpose of the calculation.
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The energy-momentum relation equation for the neutrino, neglecting neutrino mass, is

ν2
E = ν2

pT + ν2
z . (5.9)

(The neutrino mass is not currently known, but upper limits on it are on the order of eV for

the electron neutrino, and MeV for the tau and muon neutrinos, all of which are negligible

for the energies involved with this study [41, 42].) The variable a is defined for convenience

as

a = W 2
m − l2m + 2(~lpT · ~νpT ), (5.10)

where lm is the mass of the lepton. Using Equation 5.10, Equation 5.8 can be rewritten as

lEνE =
1

2
a+ lzνz. (5.11)

Substituting νE from Equation 5.11 into Equation 5.9 gives the quadratic equation for νz:

(l2E − l2z)ν2
z − alzνz + l2Eν

2
pT −

1

4
a2 = 0. (5.12)

Note that, because Equation 5.12 is a quadratic equation, it will give two solutions for νz.

The two solutions were both real and distinct around 85% of the time. The other 15% of the

time they were both imaginary. In such cases, the real portion was taken as the solution.

The third possible outcome for a quadratic, to have two identical real solutions, occurred

well under 1% of the time.

5.4.2 Choosing the Correct Neutrino Solution

In the majority of cases, there were two distinct real solutions for the neutrino’s longitu-

dinal momentum. A method was needed for selecting which of them to use for calculations.

To more rapidly generate events to test neutrino pz selection schemes, a toy Monte Carlo

program was written. It simulated a WW system, with one W decaying into quarks, and

the other into a charged lepton and a neutrino. For speed, the toy Monte Carlo used a ran-
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dom number generator to produce the smearing of measured quantities that would normally

come from detector effects. The selections that were placed on the events were applied to

the toy simulation. Once the toy gave results, they were verified by being placed into full

simulation. The task was to select the solution that is closer to the true value. Several

methods were investigated to select the best solution, and the results were compared to the

truth information. The difference between the generator level information and the selection

scheme is shown in Figure 5.1, while the difference between the generated pz value and the

value rejected by the selection scheme is shown in Figure 5.2.

• Method 0: Select the solution that is closer to the generator level truth information;

a way of cheating, just to get a feel for the best possible performance from any selection

scheme.

• Method 1: Select the solution that is further from the z momentum of the lepton.

• Method 2: Same as above, but if either solution is above 300 GeV in absolute value,

select the lower one in absolute value.

• Method 3: Select the solution that is smaller in absolute value. It does better than

methods one or two.

• Method 4: Select the solution that causes the lepton-neutrino pair to be closer to the

z axis in its direction.

• Method 5: Select the solution that causes the leptonic W to have a smaller z mo-

mentum.

• Method 6: Select the solution that minimizes the z momentum of the entire WW

system.

• Method 7: Select the solution that minimizes the mass of the overall WW system.
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The histograms were produced by subtracting the generator level neutrino pz from the

reconstructed value. The histogram in Figure 5.1 uses the reconstructed values that were

chosen by the selected method, while the histogram in Figure 5.2 uses the values that were

rejected by that method. The better a method performs, the sharper the peak will be at the

zero point of the histogram in Figure 5.1. All methods will have some spread, due to the

fact that both solutions to the quadratic equation are affected by measurement error, and

so even method 0 does not perform perfectly. The difference in shape between Figures 5.1

and 5.2 is a measure of the efficiency of the selection method. If a method were completely

random, with a fifty/fifty chance of selecting the better solution, one would expect to see a

similar shape in Figures 5.1 and 5.2. The most striking difference is for method 0, where

there’s a gap instead of a peak at the center for the rejection histogram. Among the methods

investigated, method 3 has the highest peak in Figure 5.1, and the lowest dip in Figure 5.2,

and so it was chosen. Note that method 5 is not shown in Figures 5.1 or 5.2. This is

because it always gave identical results to method 3. Note that method 5 involves adding

the z momenta of the lepton and neutrino, and minimizing the absolute value of the sum,

while method 3 only involves minimizing the absolute value of the neutrino z momentum.

If the lepton and neutrino z momenta are always pointing in the same direction, then these

methods will necessarily give the same result.
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Figure 5.1: The difference between truth information for the neutrino pz and the recon-
structed solution chosen by the given selection method.

Figure 5.2: The difference between truth information for the neutrino pz and the recon-
structed solution rejected by the given selection method.
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CHAPTER 6 MONTE CARLO

6.1 Signal Simulation

The MadGraph [43] program was used to generate the Monte Carlo simulation of the

signal processes at next to leading order (NLO). MadGraph is a matrix element generator.

It calculates cross sections for tree level processes. It also allows for beyond the standard

model (BSM) models to be imported for simulation, and allows the user to adjust parameters

specific to the BSM model, as well as basic parameters like particle masses.

The hard scattering process involves the initial interaction of the partons in the colliding

protons. The internal structure of the proton is expressed in terms of parton distribution

functions (PDFs), which express the probability for quarks and gluons in the proton to have

a fraction, x, of the proton’s total momentum. To estimate the cross section of a given

event, pp → X, it is necessary to sum over the quark, anti-quark, and (depending on the

process) gluon configurations, and for each of these, integrate the PDFs. The differential

cross section,

dσ (pp→ X)

dΩ
=
∑
qq

∫
dxdyfq

(
x,Q2

)
fq
(
y,Q2

)
dσ (qq → X) , (6.1)

is defined as an infinitesimal element of solid angle, dΩ = sin θdθdφ. The integration variables

x and y are the quark and antiquark fractions of the proton’s overall momentum. The

functions, f (x,Q2) are the parton density functions for a proton at energy Q. In this case,

the processes were pp → W± → W±Z and pp → Z/γ∗ → W+W−, followed by the decays

W/Z → jj and W → lν.

6.1.1 Multi-Weighting

One feature of MadGraph is that it allows for multiple weights to be assigned to a

process, corresponding to different values of a parameter. This saves considerable computing

time and resources. The original intention of this project was to study the five aTGC

parameters obeying SU(2)⊗ U(1) symmetry. Due to an unfortunate software bug, the two

CP-odd couplings could not be included. Therefore, only three aTGC parameters were able
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to be studied, and simulations with different values of them were needed. The reweighting

was performed with different values for the electroweak parameters described in Section 2.4.

The weighting for this study was done at leading order, and the new weight of a given

event is

Wnew =
|Mnew

h |2

|Mold
h |2

Wold. (6.2)

Here, |Mh|2 is the matrix element of the event and W is the weighting of the event. The

superscript old refers to the default weighting and matrix element, while the superscript

new refers to the weighting and matrix element selected for a given set of parameters. The

initial simulation was done with each parameter set to the maximum (positive) value to be

considered for that parameter. Then, each event was reweighted according to each of the

other scenarios under consideration (including the standard model, with all aTGC values

set to 0), with aTGC values. This process saves much computational time and storage

space when compared to running a separate simulation for each combination of values of the

parameters. A limitation of this method is that there is a danger that there will be areas

of phase space where an event occurs with a non-negligible probability in one scenario, but

not another. Therefore, the scenario that was used as the default for the simulation, before

reweighting, was the one expected to have the most events in most areas of phase space.

This is why each parameter was set to its maximum value to be considered. In this case,

if a certain region of phase space has a rather small amplitude in the standard model for

instance, but a high amplitude with all of the aTGC values set to their maximum, an event

that occurs in this region will simply have a very low weighting associated with the standard

model. However, if the standard model were to be used as the default scenario, then there

may be no events in this region to weight, or only one, which would then gain a ridiculously

high weighting associated with the aTGC values. To confirm that the multi-weight method

gave an accurate answer, small initial samples were run with the standard model only, and

this was compared to standard model events from the multi-weighted sample. Afterwards,

weights need to be checked to make sure all are on the order of unity or smaller; an excessively
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(a) WW Events in the Muon
Channel.

(b) WZ Events in the Muon
Channel.

(c) WW Events in the Elec-
tron Channel.

(d) WZ Events in the Electron
Channel.

Figure 6.1: A distribution of the weights for events generated for the signal Monte Carlo for
WW and WZ events in the electron and muon channels. Nearly all weights are of the order
1 or less.

large weight could indicate that a given area of phase space needs more events simulated.

Figure 6.1 shows the weight distributions for the WW and WZ events, in the electron and

muon channels. Note that there are some negative weights. Negative weights occur due

to statistical errors [44], but are few enough that they do not allow for an overall negative

number of events to occur in a reasonably sized bin. The three CP-even couplings were each

given five possible values, including the standard model, leading to a total of 125 different

parameter combinations. Table 6.1 shows the values generated for the various parameters.

These values were chosen based on limits set by previous analyses.

6.2 Standard Model Signal Simulation

Because the signal processes were generated with nonzero values for anomalous couplings,

and then the standard model was regained after the fact, a purely standard model Monte

Carlo of both WW and WZ events was also generated, as a means of providing a cross check,
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Table 6.1: Values used for the anomalous trilinear gauge couplings.

parameter values (TeV−2)
cWWW/Λ

2 -3.6 -1.8 0.0 +1.8 +3.6
cW/Λ

2 -4.5 -2.25 0.0 +2.25 +4.5
cB/Λ

2 -20.0 -10.0 0.0 +10.0 +20.0

due to the issues raised in Section 6.1.1.

The standard model WZ Monte Carlo, like the anomalous coupling Monte Carlo, was

generated with MadGraph, while the standard model WW Monte Carlo was generated

with Powheg [45], both at NLO. The cross sections for the standard model WW and WZ

signal were scaled to match the predictions of Refs. [46] and [47], respectively, both at

next-to-next-to-leading order (NNLO).

6.3 Background Process Simulation

Madgraph was also used to simulate the W+jets background, and the s-channel of the

single top background, both at NLO. Powheg was used to simulate tt background, and the

t- and tW-channels of the single top background, also at NLO.

6.3.1 Background Process Cross Section Calculation

To normalize the background processes, an overall cross section was calculated, with un-

certainties. Fitting MC derived distributions to data was used to refine the normalization

within the uncertainties, as discussed in Section 7.3. The cross sections for the tt back-

ground was calculated using Top++ [48], at NNLO for QCD, and next-to-next-to-leading

log (NNLL) for soft gluon radiation. For the single top processes, MCFM [49] was used to

calculate the overall cross section at NLO. The W+jets background was derived from data,

as discussed in Section 7.2.

6.4 Hadronization and Showering

After the initial hard scattering was generated, further processing was passed on to

Pythia [50] for hadronization. Pythia was responsible for showering, and for hadronizing

the quarks once they are produced.
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6.4.1 Parton Showers

The incoming partons within the protons will radiate photons and gluons before the hard

process takes place. This is known as initial state radiation (ISR). Similarly, the outgoing

particles will radiate photons and gluons, known as final state radiation (FSR). It would be

prohibitively difficult to make exact calculations for such processes, as they involve a large

number of higher order loops. Another approach is therefore taken with Pythia, the parton-

shower approach. An arbitrary number of branchings of one parton into more is combined to

yield a description of multi-jet events. Approximations of full expressions are derived from

simplifying the kinematics. Processes such as q → qg and e → eγ are substantially similar

regardless of the underlying event, and this allows them to be calculated independently.

6.4.2 Hadronization

Hadronization (also called fragmentation) involves the creation of quark-antiquark pairs

in the vacuum, and the binding of them to form colorless hadrons. This occurs when the

parton shower reaches an energy at which perturbative QCD becomes invalid [50], around 1

GeV. This process is not understood from first principles, but rather is approximated using

phenomenological models. The Lund string model [50] is used by Pythia for hadronization.

In this model, as two quarks move apart, a gluon string forms between them. As the dis-

tance increases between the quarks, the potential energy linearly increases, and it eventually

becomes energetically favorable for a new quark-antiquark pair to be formed, breaking the

gluon string. The subsequent decay of unstable hadrons is also sometimes referred to as part

of hadronization, and is handled by Pythia as well.

6.5 Detector Simulation

The detector response in the Monte Carlo was simulated using the Geant4 package

[51]. After hadronization and showering are completed, particles enter the detector, and the

response must be simulated as well. The Geant4 software takes into account the geometry

of the detector, the materials that the detector is composed of, and the detector’s magnetic

field. Using this information, the software is able to simulate how particles interact with
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matter, both electromagnetically and via the strong interaction. This information is then

used to simulate the electronic responses of the subdetectors. The output of Geant4 is

in the same format as the detector’s output, allowing the same algorithms to be used in

reconstructing data and Monte Carlo.
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CHAPTER 7 PROCESS MODELING

Diboson mass is defined as

M2
WV = (Ejets + Elep + Eν)

2 − (pjets + plep + pν)
2. (7.1)

In Equation 7.1, pjets and Ejets are the combined momentum and combined energy of the

jets, respectively; plep and Elep are the momentum and energy of the charged lepton; and pν

and Eν are the momentum and energy of the neutrino.

7.1 Signal Modeling

For signal events simulated with and without anomalous couplings, the diboson mass

distribution followed an exponentially falling distribution to a good approximation to data.

For the simulated signal process, the diboson mass distribution was modeled as [30]:

F (MWV ) = N00e
acorrMWV +

∑
i≤j

Nijcicje
aijMWV

[
δ̂ij + δi0δj0 + δij δ̂i0

(
1 + Erf((MWV − bi)/di)

2

)]
.

(7.2)

The symbol δ̂ij in Equation 7.2 is defined to be 1− δij, to represent inequality between the

two indices. The ci terms are the anomalous parameter values to be measured; for i > 0,

ci = cW
Λ2 ,

cB
Λ2 ,

cWWW

Λ2 , and c0 = 1 TeV−2 is a dummy coefficient used for the standard model

portion, for inclusion into the summation. For each of the 125 combinations of values of

anomalous parameters given in Table 6.1, the values of each ci were plugged in, and the

other parameters were determined from the multiweighted MadGraph simulation.

Terms in the sum with i 6= j and i, j 6= 0 are interference terms between anomalous

parameters. Terms with i = j 6= 0 are pure anomalous coupling terms, while terms with

i = 0 6= j are interference terms between the standard model and anomalous couplings.

Finally, the term with i = j = 0 is the pure standard model term. The term with acorr

is a correction factor that accounts for the deviation of the standard model from a pure

exponential function at higher values of MWV . The Nij are normalization constants, while

aij, bi, and di are parameters determining the shape of the fit. The normalization constant,
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N00, for the standard model is fixed to the overall NNLO cross section for the standard

model signal as discussed in Section 6.2. The other normalization constants were fit relative

to N00 using the multiweighted MadGraph simulation. Equation 7.2 can be seen modeling

signal Monte Carlo in Figures 9.1 to 9.4.

7.2 Background and SM Signal Modeling

For the background and standard model signal processes, the shape of the diboson mass

distribution was fit to the following analytical function [30]:

F (MWV ) = e(aM+ b
M ), (7.3)

where a and b were estimated from simulation or data. However, for limits in which a

selection was placed on the angle θ∗, Equation 7.3 was replaced by the analytical function:

F (MWV ) = e(
M

aM+b), (7.4)

for the W+jets background. Equation 7.4 had been used in the previous analysis [30] as

an alternate fitting function for the W+jets background in order to calculate the shape

uncertainty. After the angular cuts, the alternate fitting function was able to model the

MC, but not the original Equation 7.3. The lack of a second fitting function to model

the background means that the estimate for the shape uncertainty of the W+jets cannot be

computed. Equation 7.3 can be seen fit to the data before any angular selection in Figure 9.9.

Equations 7.3 and 7.4 can both be seen fit to data after an angular selection was applied in

Figure 9.15.

For the single top background and standard model signal, the shape and normalization

were determined from simulation. For the tt background, the shape was determined from

simulation, whereas the normalization was determined from data in a control region. In order

to fit for the values of a and b for the W+jets background, as well as to normalize, different

control regions were used. In order to separate the control regions from the signal region,
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Table 7.1: These cuts were placed on all events, signal and background.

Signal Requirement
lepton pT > 50(e) 53(µ) GeV

jet pT > 200 GeV
τ21 < 55

W pT > 200 GeV
WW mass > 900 GeV

MET > 110(e) 80(µ) GeV
|∆R(j, l)| > π/2
|∆Φ(j, l)| > 2

|∆Φ(j,MET )| > 2

softdrop jet mass, as described in Section 5.3.2, was used, as well as b-tagging. Control

regions designed to enhance the W+jets background included events with no b-tagged jets,

and with a softdrop mass within ranges outside the signal region. The lower W+jets control

region included events with a softdrop mass between 40 and 65 GeV, and the upper W+jets

control region included events with a softdrop mass between 105 and 150 GeV. The results

of the fitting, before and after angular selection, can be seen in Chapter 9.

In addition to this, there was a control region designed to enhance tt background, which

consisted of events with a softdrop mass between 40 and 150 GeV, and one or more b-

tagged jets. The signal region contained events between the two W+jets control regions,

with a softdrop mass between 65 and 105 GeV, and no b-tagged jets. The signal region,

the W+jets control regions, and the tt control region are shown in Figure 7.1. In addition,

there were general cuts that were placed on all events that were modeled, as shown in Table

7.1. These were applied to further reduce background and enhance signal. In Figure 7.2

shows the distribution of Monte Carlo events in the signal and W+jets background regions,

compared with the data after unblinding.

While Figure 7.2 shows distributions before angular selections were placed, Figures 7.3

and 7.4 show distributions after angular selections of | cos θ1| < 0.6 and | cos θ∗| < 0.8,

respectively, giving an indication of the background discriminating power of the angular

variables.



49

Figure 7.1: The signal and control regions were defined based on the soft drop PUPPI mass
and number of b-jets in the event.

Figure 7.2: Event distributions in the signal and W+jets background regions after unblind-
ing. These distributions are before any angular selections were placed on the data.
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Figure 7.3: Event distributions in the signal and W+jets background regions after unblind-
ing. These distributions are after an angular cut of | cos θ1| < 0.6 was placed on the data.

Figure 7.4: Event distributions in the signal and W+jets background regions after unblind-
ing. These distributions are after an angular cut of | cos θ∗| < 0.8 was placed on the data.
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Table 7.2: Signal and various background processes were generated with Monte Carlo and
adjusted with data from control regions. Here, MC means fixed by simulation, MC±FIT
means fixed by simulation within uncertainties and adjusted using data, and FIT means
allowed to vary freely during the data fit.

Process mWV shape norm.
W+jets MC±FIT FIT

tt MC±FIT MC±FIT
s-top MC MC±FIT
signal MC MC±FIT

7.3 Alpha Ratio Method

To calculate the MWV shape and normalization of the W+jets background, the alpha

ratio method [52] was used. The basic premise behind the alpha ratio method is to assume

that the ratio of the true shape function to that given by simulation is the same in both the

signal and background region:

F sr
dt (mWV )

F sr
mc (mWV )

' F cr
dt (mWV )

F cr
mc (mWV )

, (7.5)

where the superscripts sr and cr indicate signal region and control region, and the subscripts

dt and mc indicate data and Monte Carlo. In the control region, the background process

was dominant and thus contamination in the data from signal or other background processes

was minimal. This was checked with the signal simulation. Then, F sr
dt (mWV ) was calculated

from Equation 7.5. The alpha ratio method was used for the tt background from its control

region, and then it was used for the W+jets background from its two control regions. The

alpha function is defined as

α (mWV ) =
F sr
mc (mWV )

F cr
mc (mWV )

, (7.6)

giving the final equation for the function of mWV as

F sr
mc (mWV ) = F cr

dt,wjets (mWV )αwjets (mWV )+F cr
dt,tt (mWV )αtt (mWV )+F sr

mc,stop (mWV )+F sr
mc,sgnl (mWV ) .

(7.7)
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Figure 7.5: The QCD background was estimated from data using control regions defined by
an inverted lepton isolation selection.

What was done, therefore, was to use a combination of data and Monte Carlo to extrapolate

both shape and normalization of the background processes, using alpha transfer functions to

model the background in the signal region. Table 7.2 shows the various processes and how

their shapes and normalizations were computed.

7.4 QCD Estimation

Because QCD Monte Carlo is not always reliable, a data driven estimation of the QCD

background shape was performed with the help of a QCD enriched control region. In addition

to the already present W+jets and tt control regions, three new control regions were formed

from the data. An outer control region was defined by extending the softdrop mass beyond

the edges of the W+jets control regions, as shown in Figure 7.5. Then, the lepton isolation

criteria were inverted to form anti-isolated regions. Leptons produced via QCD effects are

likely to be surrounded by other particles. Isolation was applied to eliminate QCD. Therefore,

anti-isolation was designed to enhance it. The anti-isolated regions consisted of the QCD

enriched outer control regions, corresponding to the new outer control regions in softdrop

mass, and the QCD enriched inner control region, which corresponded to the signal and

W+jets regions in range of softdrop mass. The QCD fake rate was obtained by first taking

the ratio of events in the isolated outer control region to those in the QCD-enriched, anti-

isolated outer control region. Then, this ratio was multiplied by the number of events in
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Table 7.3: QCD estimation from the different regions in the data. The number of events in
each region is shown. The ratio is the number of events in the first column divided by that
of the second column. This was then multiplied by the fourth column to give the estimation
of the number of QCD events in the signal and W+jets control regions.

channel outer QCD outer ratio QCD inner inner
electron 507 1700563 0.030% 565450 169
muon 352 2121627 0.017% 1000762 166

Figure 7.6: Shown [30] is the estimated number of QCD events in the signal region. The
green curve represents everything except QCD, including background and standard model
signal, while the red curve is projected QCD.

the QCD enriched inner control region to give the estimated number of QCD events in the

signal region. As can be seen from the rightmost column of Table 7.3, QCD was not a large

background in the signal region. Figure 7.6 also illustrates the lack of a significant QCD

background in the signal region.

7.5 Production and Decay Angles

According to Ref. [53], the anomalous couplings κγ and λ are related to the magnetic

dipole moment µW and electric quadrupole momentQW of theW boson, while the anomalous

couplings κ̃γ and λ̃ are related to the electric dipole moment dW and the magnetic quadrupole

moment Q̃W of the W boson:

µW =
e

2MW

(1 + κγ + λ) , (7.8a)

QW = − e

2MW

(κγ − λ) , (7.8b)
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Figure 7.7: A proton-proton to WW event, showing the definitions of angles used to char-
acterize the event.

dW =
e

2MW

(
κ̃γ + λ̃

)
, (7.8c)

Q̃W = − e

2MW

(
κ̃γ − λ̃

)
. (7.8d)

Because these couplings affect the electric and magnetic moments of the W , they affect its

helicity, which in turn affects the angles at which its decay products will emerge [53].

The lνjj channel has four outgoing particles: two quarks, a charged lepton, and a neu-

trino. The quarks were reconstructed as jets in the detector, and the neutrino was identified

by transverse momentum imbalance in the event.

Five angles were needed to fully describe the decay geometry, shown in Figure 7.7. Be-

cause this was a semileptonic channel, there was a leptonically decaying gauge boson, and

a hadronically decaying gauge boson, referred to as the leptonic W and the hadronic W

or Z. The angle between the incoming protons and the outgoing gauge bosons is labelled

θ∗. The cosine of θ∗ is what was actually used in the analysis, which varies from -1 to +1.

The two incoming protons along with the two outgoing gauge bosons form a plane in the

center-of-momentum frame, labelled X in Figure 7.7. (It is assumed that the lab frame is the

center-of-momentum frame.) A decay plane can be defined for each gauge boson, contain-
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ing the momentum vectors of the boson and its decay products in the center-of-momentum

frame. The angle between the hadronic (leptonic) decay plane and plane X in the center-

of-momentum frame is Φ2 (Φ1). The angle Φ1 ranges form −π to +π, while the angle Φ2

ranges from 0 to π because the quark and antiquark were not distinguished from one another

in the measurement. The angle between the hadronic and leptonic decay planes is Φ, which

also ranges from 0 to π for the same reason as for Φ2. Among the three angles, Φ, Φ1, and

Φ2, only two are linearly independent. Of the five angles, three showed potential usefulness

for this analysis: θ∗, θ1, and θ2. To date, this is the first analysis to use angular variables to

place limits on anomalous couplings.
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CHAPTER 8 SOURCES OF UNCERTAINTY

Systematic uncertainties were computed for the Monte Carlo simulations of signal and

background processes.

Luminosity

There was an overall 2.5% uncertainty in integrated luminosity [54] that affects the overall

normalizations of the tt, single top, and signal Monte Carlo.

Pile-Up

Uncertainty in pileup reweighting of MC events was derived from the uncertainty in the

total inelastic cross section used to derive the PU weights [55].

PDFs

Uncertainty in the cross sections used to calculate signal normalization was determined

using the uncertainties in the Parton Density Functions, as recommended by Ref. [56].

Factorization and Renormalization

The choice of factorization and renormalization scales introduced some uncertainty, de-

termined by reweighting using all combinations, and taking the largest deviation as the

uncertainty [30].

τ21 Selection

A 14% normalization uncertainty from mismodeling of the τ21 selection efficiency [57]

was applied to all calculations derived from hadronic W/Z decays.

b-Tagging and b-Mistagging

Uncertainties in the b-tagging efficiencies [58] existed both for failing to identify b-jets

as well as incorrectly identifying them. Inefficiencies from failing to identify b-quark jets

had a larger effect on tt and single top normalization, while inefficiencies from incorrectly

identifying non-b-quark jets had little effect.

JEC and JER

To propagate the uncertainty of the jet energy scale correction (JEC), the energy scale

was varied within ±1 standard deviation. The energy uncertainties for AK4 and AK8 jets
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were taken from Ref. [59]. The jet smearing procedure, or jet energy resolution (JER) was

repeated after varying the scale factor withing uncertainty.

LEP and LER

Uncertainties in lepton energy scale (LEP) and lepton energy resolution (LER) were also

taken into account. Uncertainties in the electron energy scale were taken from Ref. [60], and

for muon energy uncertainty, from Ref. [61]. The resolution uncertainty of electrons and

muons were taken from the same references, respectively.

Lepton Identification

Efficiency in the identification of leptons depended on the energy as well as whether they

occur in the barrel or endcap regions. For electrons in the barrel region, this was 1% below

90 GeV, 2% below 1 TeV, and 3% above 1 TeV. For electrons in the endcap region, this was

1% below 90 GeV, 2% below 300 GeV, and 4% above 400 GeV [62]. For muons, 1% was

added for identification, another 0.5% for isolation, and another 0.5% for triggering [63].

Missing Transverse Energy

Uncertainties in MET were affected by both jet and lepton uncertainties, however, the

MET uncertainties listed in Table 8.1 only refer to those that arise from “unclustered” energy

deposits [64], arising from the energy deposits not associated with any reconstructed particle

flow candidate.

Table 8.1 lists all of the normalization uncertainties in each process. In addition, before

placing angular selections, most of the uncertainties listed in Table 8.1 were varied in order to

achieve an uncertainty on the shape parameters. This uncertainty was propagated into the

signal region via the alpha fit function. This procedure was not done after placing angular

selections. The reason for this is that several angular selections were placed, meaning that

the simulation had to be run multiple times. Additional running with varied values in order

to compute uncertainty would have multiplied the computing time necessary. Instead, it was

assumed that uncertainty on the shape parameters was unchanged. The errors on the shape

parameters are given in Tables 8.2 to 8.5.
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Table 8.1: Sources of normalization uncertainty in the analysis (%), listed by channel and
process.

channel electron muon
source tt s-top WW WZ tt s-top WW WZ
PDF 2.79 0.22 1.93 2.44 2.71 0.25 1.78 2.54

renorm/factor 17.99 0.94 5.77 4.82 17.74 1.06 5.99 4.26
lumi 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5

pileup 0.59 0.29 0.90 1.40 0.40 0.41 0.82 0.67
τ21 14 14 14 14 14 14 14 14

b-tag 1.05 0.85 0.04 0.08 1.04 0.84 0.03 0.08
b-mistag 0.04 0.05 0.02 0.04 0.05 0.05 0.03 0.04

JES 4.41 4.94 4.26 2.44 3.54 2.97 3.75 2.50
JER 1.79 3.44 1.85 2.69 0.85 0.91 0.62 2.92
LES 0.80 1.45 1.53 0.94 0.68 1.14 1.72 1.19
LER 0.26 1.22 0.11 0.21 0.02 0.27 0.14 0.33
lepID 2.12 2.22 2.30 2.26 1.81 2.04 2.55 2.42
MET 0.91 1.50 1.01 0.64 0.59 0.99 0.24 0.17
Total 23.74 15.84 16.44 15.91 23.30 14.85 16.31 15.80

Table 8.2: Uncertainties in the shape parameters for WW events in the electron channel.

param PDF ren/fac PU b-tag b-mistag JEC JER LEC LER lepID MET
acwww 3.62 3.06 0.19 0.01 0.00 0.77 1.32 0.14 0.13 1.20 0.51
acw 2.84 2.76 0.19 0.01 0.00 1.06 0.83 0.46 0.25 1.02 0.21
acb 1.63 2.47 0.15 0.01 0.00 0.28 0.80 0.45 0.32 1.13 0.47

Table 8.3: Uncertainties in the shape parameters for WW events in the muon channel.

param PDF ren/fac PU b-tag b-mistag JEC JER LEC LER lepID MET
acwww 4.47 1.88 0.33 0.01 0.01 0.54 1.21 1.34 0.13 0.28 1.01
acw 4.76 1.59 0.27 0.01 0.01 0.47 0.42 0.59 0.42 0.51 0.26
acb 1.40 1.45 0.18 0.01 0.00 0.39 0.07 0.19 0.07 0.50 0.08
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Table 8.4: Uncertainties in the shape parameters for WZ events in the electron channel.

param PDF ren/fac PU b-tag b-mistag JEC JER LEC LER lepID MET
acwww 5.86 2.46 0.37 0.00 0.01 1.26 0.60 0.50 0.35 1.18 0.54
acw 4.81 2.12 0.56 0.00 0.01 2.02 0.82 0.67 0.05 0.92 0.06
acb 2.57 2.35 0.31 0.01 0.00 2.85 1.97 0.81 0.31 1.07 0.33

Table 8.5: Uncertainties in the shape parameters for WZ events in the muon channel.

param PDF ren/fac PU b-tag b-mistag JEC JER LEC LER lepID MET
acwww 3.60 2.22 0.08 0.00 0.01 2.02 0.51 1.34 0.38 0.23 0.31
acw 2.98 1.18 0.23 0.01 0.01 2.12 1.21 0.60 0.47 0.46 0.37
acb 2.21 2.71 0.26 0.00 0.01 3.04 0.26 0.81 0.75 0.51 0.85
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CHAPTER 9 RESULTS

To compute the final limits on the anomalous couplings, the Higgs Combine Tool [65]

was used. After the background and signal distributions were modeled, limits were set at the

95% confidence level on the anomalous parameters using delta log-likelihood. The modeling

of signal, both standard model and anomalous couplings, can be seen before any angular

selections [30] in Figures 9.1 and 9.2. After an angular selection of | cos θ∗| < 0.8 was placed

on the data and Monte Carlo, the same modeling can be seen in Figures 9.3 and 9.4.

One-dimensional limits were computed by setting two of the three anomalous parameters

to zero, and varying the third. Two-dimensional limits were also computed by allowing

two to vary and keeping the third fixed to 0. According to Wilk’s Theorem [66], ∆NLL

distributions tend to χ2 distributions as the number of data points tends to infinity, with

the number of degrees of freedom depending on the number of free parameters (Two degrees

of freedom for the two-dimensional limits, one degree of freedom for the one-dimensional

limits). For the one-dimensional limits, a 95% confidence level corresponds to a χ2 value of

3.84, while for the two-dimensional limits, the same confidence level corresponds to a value

of 5.99. The value can then be projected onto the parameter axis to determine the values

of the limits. Both observed and expected limits were calculated. The expected limits were

calculated using Asimov data normalized to the expected yield. (Asimov data refers to a

data set generated by taking the expectation value of a data set, and varying it to generate

a larger data set for computing an expected limit.) Limits were found using a simultaneous

unbinned maximum likelihood fit. The best fit values of the anomalous parameters, as well

as their confidence intervals, were obtained using scans of the profile likelihood ratio, as

described in Section 3.2 of Ref. [67].

The sensitivity to anomalous couplings in angular distributions is illustrated by plotting

the angular distributions of the standard model couplings as well as for nonzero values of the

anomalous couplings for signal MC. The plots in Figure 9.5 show the results for cos θ∗ with

the standard model value along with the smaller positive and negative values of each coupling
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Figure 9.1: Equation 7.2 was used to model signal Monte Carlo in the standard model (black)
compared with anomalous couplings. Shown is WW events, electron channel on left, muon
channel on right. Top is the cWWW/Λ

2 parameter, middle is the cW/Λ
2 parameter, and

bottom is the cB/Λ
2 parameter. All plots are before angular selections. Positive values for

the parameters are shown. Negative values give similar results.

given in Table 6.1, and clearly show sensitivity to the changes in anomalous couplings.

Note that the anomalous couplings cause more events to occur at the lower absolute

values of the cosines of the angles. The bump seen in the middle of the histograms is a result
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Figure 9.2: Equation 7.2 was used to model signal Monte Carlo in the standard model (black)
compared with anomalous couplings. Shown is WZ events, electron channel on left, muon
channel on right. Top is the cWWW/Λ

2 parameter, middle is the cW/Λ
2 parameter, and

bottom is the cB/Λ
2 parameter. All plots are before angular selections. Positive values for

the parameters are shown. Negative values give similar results.

of selecting the wrong neutrino pz, as explained in Section 5.4.2. The cW/Λ
2 parameter is

the only one of the three that show asymmetric limits with respect to the distribution of

cos θ∗. Other angles were explored for sensitivity to anomalous couplings, but did not show
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Figure 9.3: Equation 7.2 was used to model signal Monte Carlo after an angular selection of
| cos θ∗| < 0.8 in the standard model (black) compared with anomalous couplings. Shown is
WW events, electron channel on left, muon channel on right. Top is the cWWW/Λ

2 parameter,
middle is the cW/Λ

2 parameter, and bottom is the cB/Λ
2 parameter. Positive values for the

parameters are shown. Negative values give similar results.

significant sensitivity, as can be seen in Figures 9.6 and 9.7. The angles Φ, Φ1, and Φ2 are

not shown, but showed flat behavior for standard model and anomalous signal, as well as for

background.
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Figure 9.4: Equation 7.2 was used to model signal Monte Carlo after an angular selection of
| cos θ∗| < 0.8 in the standard model (black) compared with anomalous couplings. Shown is
WZ events, electron channel on left, muon channel on right. Top is the cWWW/Λ

2 parameter,
middle is the cW/Λ

2 parameter, and bottom is the cB/Λ
2 parameter. Positive values for the

parameters are shown. Negative values give similar results.

Note that these plots are normalized to unit area in order to highlight the shape difference,

while factoring out differences in the overall cross section.

Looking now at the angular distributions of signal versus background (normalized to
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 9.5: The distributions for cos θ∗ show sensitivity to the anomalous couplings. Anoma-
lous parameters show a markedly different shape.

unit area), it can also be seen in Figure 9.8 that cos θ∗, along with cos θ1 and cos θ2, shows

sensitivity to signal versus background. In Figure 9.8, the primary signal Monte Carlo, WW,

is in black whereas the primary background Monte Carlo, W+jets, is in red.

Looking at cos θ1 (left), the W+jets background is biased towards positive values of the

cosine, whereas signal and other backgrounds are symmetrical between positive and negative

values. All backgrounds tend to more central values of cos θ1, peaking at either the center, or

to right in the case of W+jets. The signal, by contrast, has more of a flat shape through the

center. Looking at cos θ2 (middle), the the shape of the W+jets distribution is noticeably

different from the signal. There does not appear to be much discriminating power for the
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 9.6: The distribution of cos θ1 shows no significant distinction between standard
model and anomalous couplings.

tt or single top background from this angle, but the W+jets was the primary background.

Finally, looking at the distributions of cos θ∗ (right), we see that all of the backgrounds are

biased toward the higher absolute values of the angle, while the signal is biased towards the

lower absolute values.

The fitting functions that were described in Chapter 7 had to be slightly modified for

the W+jets background when applying angular cuts for cos θ∗, though not for cos θ1. There

was only one selection applied to cos θ1, which showed an improvement in observed but not

expected limits. There are no limits shown with a selection on cos θ2, because there was not

a fitting function that could be found to properly fit the shape.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 9.7: The distribution of | cos θ2| shows no significant distinction between standard
model and anomalous couplings.

The results of fitting, prior to any angular selections being applied, can be seen in Fig-

ures 9.9 - 9.13. Each figure shows Monte Carlo events for a specified process, and the function

that was fit to those events in the signal and background regions. All of the events together,

in a stacked plot, can be seen in Figure 9.14, to see the final overall fit after the unblinding.

After applying the angular selections, it was observed that the W+jets background did

not fit well with Equation 7.3, as can be seen in the left of Figure 9.15 for the muon channel

in the signal region of the W+jets, with an angular cut of cos θ∗ less than 0.8. After replacing

Equation 7.3 with Equation 7.4, the improved plot can be seen in the right of Figure 9.15.

Various selections were placed on the values of the cosines of two of the angular variables,
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(a) (b) (c)

(d) (e) (f)

Figure 9.8: Distributions of angles for signal processes versus the various background pro-
cesses. The major backgrounds of W+jets (red) and tt (blue) compared to the primary
signal (black), all normalized to unit area.

cos θ∗ and cos θ1, in order to see what the effect was on the anomalous coupling limits.

Figure 9.16, which comes from the published CMS results of the same data [30] shows the

one- and two-dimensional limits on the anomalous couplings before angular selections were

applied. All of these are delta log likelihood limits, as described earlier in this chapter. The

one-dimensional limits on each coupling were calculated assuming the other two couplings

to be zero. The green curve represents the expected limits, which corresponds to 95%

confidence at the point where it intersects the dashed green vertical bar. The points where

the curve intersects the dashed red and blue bars represent the 99% and 68% confidence

levels, respectively. The black curve represents the observed limits, where the intersection

of the curve with the black vertical dashed line represents the 95% confidence level. The

two-dimensional limits vary two couplings at a time, assuming the third to be zero. The
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(a) (b)

(c) (d)

Figure 9.9: Fitting for W+jets background MC events, on a log scale, prior to any angular
selections. Signal region (top) and W+jets control region (bottom). Muon channel (left)
and electron channel (right).

solid black curve in the 2D plots represents the observed 95% confidence level, while the

dashed red, green, and blue curves represent the expected 99%, 95%, and 68% confidence

levels, respectively. The thick black cross in the 2D plots represents the best-fit point in the

Asimov data, while the thick square represents the standard model point with both couplings

at 0. The top of Table 9.1 shows the limits placed on the anomalous couplings prior to any

angular selections.

Placing a selection of cosine of θ∗ less than 0.5 gave improvement, with a 30% increase on

the cWWW parameter, and a 25% and 35% increase on the lower and upper bounds, respec-

tively, of the cB parameter, as seen in Figure 9.17 as well as Table 9.1. The improvement

of the observed limits of the cW parameter were more dramatic, with a 64% increase on the

upper limit for the selection of 0.5, but only a 4% increase for the lower limit. Increasing

the maximum value from 0.5 to 0.6 showed a slight degradation in all of the observed limits,

as can be seen in Figure 9.18, and a value of 0.7 showed little change from 0.6, as seen
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(a) (b)

(c) (d)

Figure 9.10: Fitting for tt background MC events, on a log scale, prior to any angular
selections. Signal region (top) and tt control region (bottom). Muon channel (left) and
electron channel (right).

in Figure 9.19. Setting the selection on the cosine of θ∗ to 0.8 made the limits on cW/Λ
2

more symmetric, with a 4% improvement over no selection. The limits on cWWW/Λ
2 did not

appreciably change, while the limits on cB/Λ
2 degraded a bit, with only a 12% improvement

in observed limits, as seen in Figure 9.20. For the selections on the cosine of the θ1 angle less

than 0.6, more modest improvements were gained as seen in Figure 9.21, with about a 6%

improvement on the cWWW/Λ
2 parameter, and a 12% improvement on the cB/Λ

2 parameter.

As in the case of the selection on cos θ1, the observed limits on the cW/Λ
2 parameter

improved asymmetrically, with a larger improvement on the upper limits of 12%, though not

as dramatic of a difference. The improvements on the lower limits of cW/Λ
2 were actually

slightly better with the selection on cos θ1, at 5%.

These results are significant. If we expect limits to improve proportionally to 1√
N

, where

N is number of events, a 30% improvement corresponds to roughly a doubling of statistics.
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(a) (b)

(c) (d)

Figure 9.11: Fitting for single top background MC events, on a log scale, prior to any angular
selections. Signal region (top) and w+jets control region (bottom). Muon channel (left) and
electron channel (right).

(a) (b)

(c) (d)

Figure 9.12: Fitting for standard model WW signal MC events, on a log scale, prior to any
angular selections. Signal region (top) and W+jets control region (bottom). Muon channel
(left) and electron channel (right).
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(a) (b)

(c) (d)

Figure 9.13: Fitting for standard model WZ signal MC events, on a log scale, prior to any
angular selections. Signal region (top) and W+ jets control region (bottom). Muon channel
(left) and electron channel (right).

Figure 9.14: All of the Monte Carlo together in the signal region, along with the data after
unblinding, before any angular selections were added. Electron channel (left) and muon
channel (right).
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(a) (b)

(c) (d)

Figure 9.15: W+jets fitting in the muon channel before (top) and after (bottom) W+jets
equation was modified. Electron channel on left, muon channel on right.
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Figure 9.16: Limits on the anomalous parameters before the angular selections were applied.
Expected limits shown in blue (68% confidence), green (95% confidence), and red (99%
confidence). Observed limits shown in black (95% confidence).
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Table 9.1: Limits on anomalous couplings before [30] and after angular selections were added.
Expected limits are from simulation, observed limits are from data. All limits from angular
cuts are new, and have not been published.

aTGC (TeV−2) Expected limit (sim) Observed limit (data)
prior to selection

cWWW/Λ
2 [-1.44,+1.47] [-1.58,+1.59]

cW/Λ
2 [-2.45,+2.08] [-2.00,+2.65]

cB/Λ
2 [-8.38,+8.06] [-8.78,+8.54]

selection of | cos θ∗| < 0.5
cWWW/Λ

2 [-0.918,+0.932] [-1.05,+1.08]
cW/Λ

2 [-1.60,+1.29] [-1.92,+0.967]
cB/Λ

2 [-5.62,+5.22] [-6.58,+5.38]

selection of | cos θ∗| < 0.6
cWWW/Λ

2 [-0.911,+0.925] [-1.08,+1.11]
cW/Λ

2 [-1.58,+1.28] [-1.93,+1.17]
cB/Λ

2 [-5.54,+5.18] [-6.54,+5.38]

selection of | cos θ∗| < 0.7
cWWW/Λ

2 [-0.911,+0.925] [-1.09,+1.11]
cW/Λ

2 [-1.58,+1.28] [-1.92,+1.35]
cB/Λ

2 [-5.46,+5.14] [-6.58,+5.58]

selection of | cos θ∗| < 0.8
cWWW/Λ

2 [-1.11,+1.13] [-1.02,+1.03]
cW/Λ

2 [-1.95,+1.54] [-1.66,+1.51]
cB/Λ

2 [-6.58,+6.14] [-6.10,+5.42]

selection of | cos θ1| < 0.6
cWWW/Λ

2 [-1.57,+1.60] [-1.47,+1.48]
cW/Λ

2 [-2.59,+2.12] [-1.89,+2.34]
cB/Λ

2 [-8.66,+8.22] [-7.74,+7.42]

selection of | cos θ2| < 0.6
cWWW/Λ

2 [-1.52,+1.55] [-1.29,+1.30]
cW/Λ

2 [-2.61,+2.15] [-2.01,+2.05]
cB/Λ

2 [-8.62,+8.18] [-7.02,+6.38]
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Figure 9.17: Limits on the anomalous parameters after an angular selection of | cos θ∗| < 0.5
was applied. Expected limits shown in blue (68% confidence), green (95% confidence), and
red (99% confidence). Observed limits shown in black (95% confidence).
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Figure 9.18: Limits on the anomalous parameters after an angular selection of | cos θ∗| < 0.6
was applied. Expected limits shown in blue (68% confidence), green (95% confidence), and
red (99% confidence). Observed limits shown in black (95% confidence).
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Figure 9.19: Limits on the anomalous parameters after an angular selection of | cos θ∗| < 0.7
was applied. Expected limits shown in blue (68% confidence), green (95% confidence), and
red (99% confidence). Observed limits shown in black (95% confidence).
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Figure 9.20: Limits on the anomalous parameters after an angular selection of | cos θ∗| < 0.8
was applied. Expected limits shown in blue (68% confidence), green (95% confidence), and
red (99% confidence). Observed limits shown in black (95% confidence).
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Figure 9.21: Limits on the anomalous parameters after an angular selection of | cos θ1| < 0.6
was applied. Expected limits shown in blue (68% confidence), green (95% confidence), and
red (99% confidence). Observed limits shown in black (95% confidence).
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CHAPTER 10 CONCLUSIONS

This analysis has shown that angular variables can be used to improve limits placed

on anomalous trilinear gauge couplings. While the resulting limits show an improvement

based on selections of both | cos θ∗| and | cos θ1|, with optimal selection being around 0.8

for | cos θ∗|, more exploration is needed. Only one selection was attempted for | cos θ1|, of

0.6, due to time constraints, which improved the observed limits, but not the expected

limits. Placing selections on | cos θ∗| required a modification of the fit function, replacing

Equation 7.3 with Equation 7.4. On the other hand, Equation 7.3 worked when selections

were placed on | cos θ1|. Neither Equation 7.4 nor Equation 7.3 worked when a selection

was placed on | cos θ2|. The result of this was that expected and observed limits failed to

converge. Investigation is needed to discover the correct fitting function for these selections.

In addition, no attempt was made to place selections on more than one angular variable,

which may prove useful.

Placing selections on the angular variables can increase the signal to background ratio,

as well as provide sensitivity to the anomalous couplings. This appears to have led to an

improvement of around 30% for limits on two of the three couplings, and an asymmetric

improvement of 64% for the limits on the third. The 30% improvement corresponds roughly

to a doubling of statistics, while a symmetric improvement of 64% would correspond to a

whopping eight(!) times the statistics. It should be noted that these limits improve on those

set by Reference [30], which are currently the best in the world. It should be pointed out that

the 64% improvement for the cB/Λ
2 parameter is not symmetric, and it is not understood

why this is so. Uncertainties on the shape parameters were performed in Reference [30] by

rerunning the simulation while varying PDFs and other inputs within their uncertainties,

as explained in Chapter 8. Because this analysis already involved running the simulation

multiple times, these uncertainties were not recalculated, so more work is needed to confirm

these uncertainties.

This analysis has also shown the effectiveness of several methods of selecting from between
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two values of neutrino pz, with the most effective method for this analysis being to simply

take the smaller absolute value. More work can be done to improve the selection method,

such as the possibility of a combination of the methods already tried.
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A study of techniques for improving limits placed on anomalous trilinear couplings of

electroweak gauge bosons is presented. Electroweak gauge bosons couple to one another as

well as to fermions. Deviations of these couplings from their standard model values would be

a sign of new physics. Parameters that affect the couplings of the gauge bosons to each other

also affect their helicity, which in turn may be measured from their decay products. Angles

between the decay planes of the gauge bosons, as well as between their decay products, are

measured. The analysis uses 35.9 fb−1 of proton-proton collision data from the LHC taken

with the CMS detector. Building on a prior analysis that measured the fiducial cross section

of pp→ WW/WZ → `νjj, we show that angular variables can improve limits on anomalous

couplings even further.
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